

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

DAFA Q-lon sealing strip Dafa A/S

EPD HUB, HUB-0957

Publishing date 15 December 2023, last updated date 15 December 2023, valid until 15 December 2028

GENERAL INFORMATION

MANUFACTURER

Manufacturer	DAFA A/S
Address	Holmstrupgårdvej 12, 8220 Brabrand, Denmark
Contact details	dbs@dafa-group.com
Website	https://dafa-build.com/en

EPD STANDARDS, SCOPE, AND VERIFICATION

-,	,									
Program operator	EPD Hub, hub@epdhub.com									
Reference standard	EN 15804+A2:2019 and ISO 14025									
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022									
Sector	Construction product									
Category of EPD	Third party verified EPD									
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D									
EPD author	Ksenija Ruby									
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal certification ☑ External verification									
EPD verifier	Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited									

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	DAFA Q-lon sealing strip
Additional labels	-
Product reference	-
Place of production	Denmark, Århus
Period for data	2022/01/01-2022/12/31
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	n.a.

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 m
Declared unit mass	0.00857 kg
GWP-fossil, A1-A3 (kgCO2e)	8,66E-02
GWP-total, A1-A3 (kgCO2e)	7,28E-02
Secondary material, inputs (%)	0.779
Secondary material, outputs (%)	0.0
Total energy use, A1-A3 (kWh)	0.403
Total water use, A1-A3 (m3e)	1,45E-03

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

DAFA Building Solutions for the building industry with a focus on holistic and environmentally beneficial solutions. Products and systems that seal and make buildings long-lasting and more sustainable - both for renewal and new constructions.

PRODUCT DESCRIPTION

Q-Lon sealing strips consist of a rigid core overlaid with highly elastic PU foam with a smooth, dirt-repellent, and hard-wearing PE foil.

Q-Lon sealing strips are used in construction, e.g., on windows and doors, and meet all conceivable requirements for an optimal, long-lasting seal. Q-Lon strips do not have to be welded or glued in corners but simply mitred using special cutters. Q-Lon has been extensively tested by independently certified test facilities that clearly demonstrate its superior performance over other commonly used seal materials and constructions. It has been shown that Q-Lon seals retain their properties and performance significantly better over time when, after 10,000 cycles of window and/or door opening and closing, other materials lose their ability to meet the normal operational requirements.

Further information can be found at https://dafa-group.com/dk.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	0	-
Minerals	0	-
Fossil materials	100	EU
Bio-based materials	0	-

BIOGENIC CARBON CONTENT

The product's biogenic carbon content at the factory gate

Biogenic carbon content in the product, kg C	0.0001064
Biogenic carbon content in packaging, kg C	0.003818

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 m
Mass per declared unit	0.00857 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	age		emb tage			U	se sta	ge			E	nd of I	ife sta	ge	sy	Beyond the system boundar ies			
A1	A2	A3	Α	Α	В	В	В	В	В	В	В	С	С	С	С		D			
			4	5	1	2	3	4	5	6	7	1	2	3	4					
Х	Х	Х	X	X	MN D	MN D	MN D	MN D	MN D	MN D	MN D	Х	X	X	X	×				
Ra w m at eri als	Tr an sp or t	M an uf ac tu rin g	Tr a n s p or t	A ss e m bl y	U se	M ai nt e n a n ce	R e p ai r	R e pl ac e m e nt	R ef ur bi s h m e nt	O p er at io n al e n er g y u se	O p er at io n al w at er u se	D ec o n st r. / d e m ol .	Tr a n s p or t	W as te pr o ce ss in g	Di s p o sa I	R e u s e	R e c o v e r	R e c y c l i n g		

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the

manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Manufacturing

The manufacturing is in Aarhus, Denmark. The distance to the manufacturing site is 1331 km, performed by lorry. There is no internal transport. Packaging: The items are packed in their dedicated boxes and placed on reusable pallets, which are also wrapped in PE plastic film. All packaging materials are recyclable or even reusable (pallets).

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurring from final products delivery to the construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

Transportation impacts occurring from final product delivery to the construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

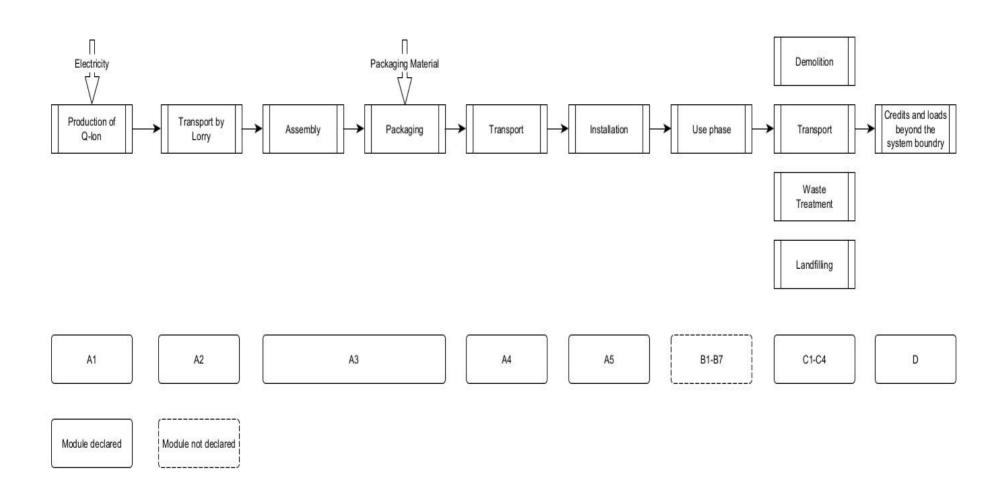
The transportation distance is defined according to the PCR. The average distance of transportation from storage to the customer site is 10429 km and the transportation method is by lorry. The vehicle capacity utilization volume factor is assumed to be 1 which means full load. It may vary but as the role of transportation emissions in total results is small, the variety in load is assumed to be negligible. Empty returns are not considered as it is assumed that the return trip is used by the transportation company to serve the needs of other clients. (Empty returns are considered in the ecoinvent database.) Transportation does not cause losses as the product is packaged properly. Environmental impacts from installation into the building include the generation of waste packaging materials, and the release of biogenic carbon dioxide from wood pallets. The product is installed manually, installation waste is negligible. Transportation does not cause losses as the product is packaged properly.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-c4, D)


For C1 it has been assumed that the product can be uninstalled manually by using hand-cutting tools. The end-of-life waste scenario per input material has been chosen, and for each raw material, 100% incineration has been modelled considering suitable loads and benefits. The transportation distance to treatment is assumed to be 50 km, and the transportation method is assumed to be a lorry (C2). Module C3 accounts for energy and resource inputs for sorting and treating these waste streams for recycling and incineration with energy recovery with efficiency of 90%. The energy recovered mitigates 85% district heat, and 15% electricity. Due to the material and energy recovery potential of parts in the end-of-life product and packaging, the energy recovered from incineration replaces electricity and heat production (D). The benefits and loads of incineration are included in Module D. All end-of-life product is assumed to be sent to the closest facilities.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes that are stated as mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	Allocated by mass or volume
Ancillary materials	No allocation
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	n.a.

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent v3.8 and One Click LCA databases were used as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP – total¹)	kg CO₂e	7,38E-02	6,35E-03	-7,35E- 03	7,28E-02	5,07E-02	1,45E- 02	MND	0,00E+00	0,00E+00	4,72E- 02	0,00E+00	-3,93E- 02						
GWP – fossil	kg CO ₂ e	7,34E-02	6,34E-03	6,87E- 03	8,66E-02	5,07E-02	2,36E- 04	MND	0,00E+00	0,00E+00	4,76E- 02	0,00E+00	-3,93E- 02						
GWP – biogenic	kg CO₂e	3,94E-04	0,00E+00	-1,42E- 02	-1,39E- 02	0,00E+00	1,42E- 02	MND	0,00E+00	0,00E+00	-3,84E- 04	0,00E+00	0,00E+00						
GWP – LULUC	kg CO₂e	1,76E-05	2,54E-06	2,91E- 05	4,92E-05	1,99E-05	1,22E- 07	MND	0,00E+00	0,00E+00	4,04E- 07	0,00E+00	-4,50E- 05						
Ozone depletion pot.	kg CFC ₋₁₁ e	9,99E-10	1,47E-09	6,49E- 10	3,12E-09	1,17E-08	2,62E- 11	MND	0,00E+00	0,00E+00	1,04E- 10	0,00E+00	-4,81E- 09						
Acidification potential	mol H+e	3,10E-04	1,80E-05	2,88E- 05	3,57E-04	2,06E-04	1,57E- 06	MND	0,00E+00	0,00E+00	1,10E- 05	0,00E+00	-7,91E- 05						
EP-freshwater ²⁾	kg Pe	3,08E-06	4,53E-08	4,30E- 07	3,56E-06	3,56E-07	3,87E- 09	MND	0,00E+00	0,00E+00	1,25E- 08	0,00E+00	-1,33E- 06						
EP-marine	kg Ne	8,51E-05	3,59E-06	1,12E- 05	9,99E-05	6,15E-05	6,19E- 07	MND	0,00E+00	0,00E+00	5,13E- 06	0,00E+00	-1,96E- 05						
EP-terrestrial	mol Ne	5,72E-04	3,99E-05	8,77E- 05	6,99E-04	6,78E-04	6,51E- 06	MND	0,00E+00	0,00E+00	5,27E- 05	0,00E+00	-2,20E- 04						
POCP ("smog") ³⁾	kg NMVOCe	2,24E-04	1,53E-05	2,39E- 05	2,63E-04	2,08E-04	1,73E- 06	MND	0,00E+00	0,00E+00	1,28E- 05	0,00E+00	-6,12E- 05						
ADP-minerals & metals ⁴⁾	kg Sbe	4,90E-07	2,29E-08	3,62E- 08	5,50E-07	1,80E-07	1,55E- 09	MND	0,00E+00	0,00E+00	4,30E- 09	0,00E+00	-9,16E- 08						
ADP-fossil resources	MJ	1,77E+00	9,44E-02	9,52E- 02	1,96E+00	7,53E-01	2,45E- 03	MND	0,00E+00	0,00E+00	8,85E- 03	0,00E+00	-6,25E- 01						
Water use ⁵⁾	m³e depr.	5,46E-02	4,42E-04	4,20E- 03	5,92E-02	3,48E-03	4,43E- 04	MND	0,00E+00	0,00E+00	1,88E- 03	0,00E+00	-1,30E- 02						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	7,38E- 02	1,37E- 03	1,04E- 01	1,79E- 01	1,08E- 02	8,71E- 05	MND	0,00E+0 0	0,00E+0 0	3,46E- 04	0,00E+0 0	-1,61E- 01						
Renew. PER as material	MJ	0,00E+0 0	0,00E+0 0	1,24E- 01	1,24E- 01	0,00E+0 0	-1,24E- 01	MND	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	1,04E- 03						
Total use of renew. PER	MJ	7,38E- 02	1,37E- 03	2,28E- 01	3,04E- 01	1,08E- 02	-1,24E- 01	MND	0,00E+0 0	0,00E+0 0	3,46E- 04	0,00E+0 0	-1,60E- 01						

| Non-re. PER as energy | MJ | 1,08E+0
0 | 9,44E-
02 | 8,92E-
02 | 1,27E+0
0 | 7,53E-
01 | 2,45E-
03 | MND | 0,00E+0
0 | 0,00E+0
0 | 8,85E-
03 | 0,00E+0
0 | -6,25E-
01 |
|--------------------------|----|--------------|--------------|---------------|--------------|--------------|---------------|-----|-----|-----|-----|-----|-----|-----|--------------|--------------|---------------|--------------|---------------|
| Non-re. PER as material | MJ | 6,86E-
01 | 0,00E+0
0 | -1,07E-
02 | 6,76E-
01 | 0,00E+0
0 | -6,07E-
03 | MND | 0,00E+0
0 | 0,00E+0
0 | -6,69E-
01 | 0,00E+0
0 | 0,00E+0
0 |
| Total use of non-re. PER | MJ | 1,77E+0
0 | 9,44E-
02 | 7,85E-
02 | 1,94E+0
0 | 7,53E-
01 | -3,62E-
03 | MND | 0,00E+0
0 | 0,00E+0
0 | -6,61E-
01 | 0,00E+0
0 | -6,25E-
01 |
| Secondary materials | kg | 6,68E-
05 | 3,21E-
05 | 3,16E-
03 | 3,26E-
03 | 2,52E-
04 | 3,88E-
06 | MND | 0,00E+0
0 | 0,00E+0
0 | 7,88E-
06 | 0,00E+0
0 | -7,49E-
05 |
| Renew. secondary fuels | MJ | 1,68E-
06 | 3,54E-
07 | 3,15E-
03 | 3,15E-
03 | 2,78E-
06 | 1,51E-
08 | MND | 0,00E+0
0 | 0,00E+0
0 | 2,78E-
07 | 0,00E+0
0 | -1,68E-
07 |
| Non-ren. secondary fuels | MJ | 0,00E+0
0 | 0,00E+0
0 | 0,00E+0
0 | 0,00E+0
0 | 0,00E+0
0 | 0,00E+0
0 | MND | 0,00E+0
0 | 0,00E+0
0 | 0,00E+0
0 | 0,00E+0
0 | 0,00E+0
0 |
| Use of net fresh water | m³ | 1,30E-
03 | 1,20E-
05 | 1,32E-
04 | 1,45E-
03 | 9,47E-
05 | -9,04E-
07 | MND | 0,00E+0
0 | 0,00E+0
0 | 7,03E-
05 | 0,00E+0
0 | -4,05E-
04 |

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste	kg	2,12E- 03	1,07E- 04	4,28E- 04	2,65E- 03	8,45E- 04	8,34E- 06	MND	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	-1,22E- 03						
Non-hazardous waste	kg	2,69E- 02	1,91E- 03	1,26E- 02	4,14E- 02	1,50E- 02	6,50E- 03	MND	0,00E+0 0	0,00E+0 0	2,00E- 02	0,00E+0 0	-3,56E- 02						
Radioactive waste	kg	1,86E- 06	6,50E- 07	3,23E- 07	2,83E- 06	5,19E- 06	8,90E- 09	MND	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	-9,00E- 07						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Components for re- use	kg	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	MND	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0						
Materials for recycling	kg	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	2,88E- 03	MND	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0						
Materials for energy rec	kg	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	MND	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0						
Exported energy	MJ	0,00E+0 0	0,00E+0 0	5,98E- 03	5,98E- 03	0,00E+0 0	8,03E- 02	MND	0,00E+0 0	0,00E+0 0	5,54E- 01	0,00E+0 0	0,00E+0 0						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1- A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	6,98E- 02	6,29E- 03	6,93E- 03	8,31E- 02	5,02E- 02	2,93E- 04	MND	0,00E+0 0	0,00E+0 0	4,75E- 02	0,00E+0 0	-3,86E- 02						
Ozone depletion Pot.	kg CFC.	8,94E- 10	1,16E- 09	5,54E- 10	2,61E- 09	9,30E- 09	2,14E- 11	MND	0,00E+0 0	0,00E+0 0	9,41E- 11	0,00E+0 0	-4,23E- 09						
Acidification	kg SO₂e	2,59E- 04	1,48E- 05	2,12E- 05	2,95E- 04	1,60E- 04	1,16E- 06	MND	0,00E+0 0	0,00E+0 0	7,83E- 06	0,00E+0 0	-6,24E- 05						
Eutrophication	kg PO ₄ ³e	6,61E- 05	3,19E- 06	1,84E- 05	8,77E- 05	3,63E- 05	1,60E- 06	MND	0,00E+0 0	0,00E+0 0	5,66E- 06	0,00E+0 0	-3,72E- 05						
POCP ("smog")	kg C₂H₄e	1,66E- 05	7,47E- 07	1,82E- 06	1,91E- 05	6,55E- 06	8,39E- 08	MND	0,00E+0 0	0,00E+0 0	1,69E- 07	0,00E+0 0	-3,71E- 06						
ADP-elements	kg Sbe	3,12E- 07	2,24E- 08	3,32E- 08	3,68E- 07	1,76E- 07	1,51E- 09	MND	0,00E+0 0	0,00E+0 0	3,35E- 09	0,00E+0 0	-9,13E- 08						
ADP-fossil	MJ	1,77E+ 00	9,44E- 02	9,48E- 02	1,96E+ 00	7,53E- 01	2,45E- 03	MND	0,00E+0 0	0,00E+0 0	8,85E- 03	0,00E+0 0	-6,25E- 01						

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents, and compliance with reference standards, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by the One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA, and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

15.12.2023

